A field size specific backscatter correction algorithm for accurate EPID dosimetry.

نویسندگان

  • Sean L Berry
  • Cynthia S Polvorosa
  • Cheng-Shie Wuu
چکیده

PURPOSE Portal dose images acquired with an amorphous silicon electronic portal imaging device (EPID) suffer from artifacts related to backscattered radiation. The backscatter signal varies as a function of field size (FS) and location on the EPID. Most current portal dosimetry algorithms fail to account for the FS dependence. The ramifications of this omission are investigated and solutions for correcting the measured dose images for FS specific backscatter are proposed. METHODS A series of open field dose images were obtained for field sizes ranging from 2 x 2 to 30 x 40 cm2. Each image was analyzed to determine the amount of backscatter present. Two methods to account for the relationship between FS and backscatter are offered. These include the use of discrete FS specific correction matrices and the use of a single generalized equation. The efficacy of each approach was tested on the clinical dosimetric images for ten patients, 49 treatment fields. The fields were evaluated to determine whether there was an improvement in the dosimetric result over the commercial vendor's current algorithm. RESULTS It was found that backscatter manifests itself as an asymmetry in the measured signal primarily in the inplane direction. The maximum error is approximately 3.6% for 10 x 10 and 12.5 x 12.5 cm2 field sizes. The asymmetry decreased with increasing FS to approximately 0.6% for fields larger than 30 x 30 cm2. The dosimetric comparison between the measured and predicted dose images was significantly improved (p << .001) when a FS specific backscatter correction was applied. The average percentage of points passing a 2%, 2 mm gamma criteria increased from 90.6% to between 96.7% and 97.2% after the proposed methods were employed. CONCLUSIONS The error observed in a measured portal dose image depends on how much its FS differs from the 30 x 40 cm2 calibration conditions. The proposed methods for correcting for FS specific backscatter effectively improved the ability of the EPID to perform dosimetric measurements. Correcting for FS specific backscatter is important for accurate EPID dosimetry and can be carried out using the methods presented within this investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Empirical Transmitted EPID Dosimetry Method using a Back-Projection Algorithm

Background: The present study aimed to introduce a rapid transmission dosimetry through an electronic portal-imaging device (EPID) to achieve two-dimensional (2D) dose distribution for homogenous environments. Material and Methods: In this Phantom study, first, the EPID calibration curve and correction coefficients for field size were obtained from EPID and ionization chamber. Second, the...

متن کامل

Assessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification

Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...

متن کامل

EPID dosimetry for pretreatment quality assurance with two commercial systems

This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and th...

متن کامل

Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification.

The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images w...

متن کامل

Calculation of exit dose for conformal and dynamically‐wedged fields, based on water‐equivalent path length measured with an amorphous silicon electronic portal imaging device

In this study, we use the quadratic calibration method (QCM), in which an EPID image is converted into a matrix of equivalent path lengths (EPLs) and, therefore, exit doses, so as to model doses in conformal and enhanced dynamic wedge (EDW) fields. The QCM involves acquiring series of EPID images at a reference field size for different thicknesses of homogeneous solid water blocks. From these, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 37 6Part1  شماره 

صفحات  -

تاریخ انتشار 2010